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Stability of the isotropic fixed point near one dimension 
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Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 24061, USA 

Received 19 November 1985 

Abstract. Within the context of the 1 + E expansion and the near-planar interface Hamil- 
tonian, the isotropic fixed point is found to be stable to a wide class of perturbations. In 
particular, the universality class includes all non-singular forms of anisotropic surface 
tension. 

1. Introduction 

Some time ago, the idea of analysing Ising-like systems by an expansion around the 
lower critical dimension was proposed (Wallace and Zia 1979). This possibility was 
based on a study of the statistical mechanics of nearly planar interfaces at low 
temperatures. Since then, many contributions (Diehl et a1 1980, Forster and Gabriunas 
1981a, b, David 1981, Bausch et a1 1981, Bruce and Wallace 1981a, b, 1983, Lin and 
Lowe 1983, Schmittmann 1984) have added to the overall understanding of this system, 
while others (Lowe and Wallace 1980, Kogon and Wallace 1981, Pytte et al 1981, 
Mukamel and Pytte 1982, Lowe 1982, Schmittmann 1982, Grinstein and Ma 1982, 
1983, Grinstein 1984) have generalised this approach to study other systems. 

Although doubts about the very philosophy of using interfacial fluctuations to 
describe bulk criticality were harboured in the early stages, explicit cfticisms only 
appeared recently (Huse et a1 1985, Teitel and Mukamel 1984). The main thrust of 
these is directed at the possible instability of the isotropic fixed point. Though they 
argued that the neglect of overhangs spoils rotational invariance, none of the authors 
demonstrated mathematically how the isotropic fixed point is unstable against over- 
hangs. The beautiful model of Huse et a1 (1985) is unfortunately not a strong witness 
to support their case, for reasons we will detail in the last section. Certainly, there is 
no evidence of instability of the isotropic fixed point within the framework of the E 

expansion. Nor is there strong evidence otherwise! To date, only one perturbation 
has been studied (Lin and Lowe 1983) at the one loop order, and it is irrelevant. Since 
this perturbation corresponds to the mean curvature and is naively irrelevant the 
stability of the isotropic fixed point was not severely ‘tested’. On the other hand, there 
are injinitely many perturbations which are naively marginal (since Vfis dimensionless). 
Their effects on the isotropic fixed point were not fully understood (Zia and Lowe 
1980). Thus, questions concerning the stability properties remain largely unanswered. 

The main purpose of this paper is a study of the naively marginal perturbations. 
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A systematic classification of these operators, in terms of generalised spherical harmonic 
functions of the normal vector of the interface, emerges. At the one loop level, we 
find that all are irrelevant, except the following three cases. One (finite) set remains 
marginal, while another, corresponding to the change of temperature, is relevant. The 
last case, though formally relevant, is not associated with bona fide operators. The 
possible physical origins of these irrelevant/marginal operators may be anisotropy in 
the surface tension. If this anisotropy is a non-singular function of angles, then its 
effects on the isotropic fixed point are not relevant. After a brief review of the methods 
used to obtain the isotropic fixed point, we provide some details of the analysis of 
insertions at the one loop level. Finally, we discuss the physics associated with these 
operators and conclude with some observations. 

2. Interfacial fluctuations in 1 + E dimensions 

Here, we present a brief review of the framework within which the isotropic fixed 
point is studied. For details, see Wallace (1984) and references therein. 

Consider a bulk system with two-phase coexistence in d-dimensional Euclidean 
space (with coordinates {xi, z}, where i = 1, . . . , d - 1). Let an interfacial configuration 
between the phases be specified by z=f(x) .  To this configuration, we associate an 
energy functional (Mandelstam 1913, Buff et a1 1965) which is simply (+ times the area 
of the interface, where (T is the surface tension (surface energy density). To study the 
statistical mechanics of such a system, we average over all f (x)  with the Boltzmann 
factor exp{-H[f]}. Absorbing both (T and the Boltzmann constant into the scale of 
temperature, we begin simply with the effective Hamiltonian: 

r 

H [ f ]  = J dd-'x(&)/ T 

where g = 1 + (Vf)' and T is the temperature. Parenthetically, note that (1) may be 
derived from a bulk Hamiltonian in the sense of a low T limit (Diehl et a1 1980, Lowe 
1982, Zia 1985). The physics is then contained in the correlation functions of f  and 
their derivatives. 

Before we discuss the field theoretic approach to this problem, some remarks 
concerning the symmetry properties of H are in order. Manifestly, H is symmetric 
under transformations of a (d  - 1)-dimensional Euclidean group. The bulk Hamil- 
tonian from which H is derived, however, is symmetric under the full d-dimensional 
group. The difference lies in the explicit breaking of the full symmetry by f(x). In 
particular, under translations in z, f changes in the same fashion; while under a z-xi 
rotation by an infinitesimal angle a i ,  it transforms according to 

f ( ~ )  + f ( x )  + ai{xi + f V f } .  (2) 

Now, it is straightforward to check that H is invariant under these transformations 
since & changes by a total divergence. Thus, the full symmetry is non-linearly realised 
in H. In the same spirit as the non-linear sigma model (Polyakov 1975, Brezin and 
Zinn-Justin 1976a, b) for Heisenberg spin systems, our interfacial Hamiltonian contains 
f as the soft Goldstone modes associated with a spontaneous breaking of a continuous 
symmetry. 
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The analysis now proceeds along well known lines, regarding the ;(Vf)’ part of H 
as a free Hamiltonian. The higher order terms 

U(vf)=+l-;vf2 (3) 

appearing via U = dx U /  T, are treated as perturbation. In practice, a further quadratic 
‘mass’ term, dx(m2f2)/ T, must be added for a well defined theoryt. The physical 
origin of this term can be gravity for a liquid-gas system, for example. Mathematically, 
it is a necessary infrared regulator, leading to the propagator T / ( k 2 +  m’). From (3) ,  
we see that every vertex comes with a factor of 1/ T so that a systematic expansion in 
powers of T, corresponding to the loop expansion, emerges. Note that ( a )  T plays 
the role of the coupling constant and ( b )  it is consistent with the idea that H is expected 
to be good for small i7 When we study the dimensions of various quantities, we find 
that the simplest choice is to keep Vf (and fi) dimensionless for any d, so that m is 
an inverse length (capillary length for liquid-gas). Then, T becomes dimensionless 
for d = 1. Expecting the theory to be renormalisable for this d, we are led naturally 
to consider renormalisation group analyses for these systems in an E d - 1 expansion. 
Employing dimensional regularisation, we find that all vertex functions r can be 
rendered free of poles in E ,  if expressed in terms of the renormalised temperature t 
and ‘mass’ mR.  The renormalised vertex functions satisfy the renormalisation group 
equations. Appearing in these equations is ,L?(r), which controls the change of t with 
respect to a scale change. Since we are interested in O ( E )  results, it is sufficient to 
quote p = E t  - t 2 +  . . , Thus we arrive at a ‘trivial’ fixed point t = 0 and, for E > 0, a 
non-trivial one: 

t,= E + 0 ( E 2 ) .  (4) 

The former represents a system at T = 0, with a flat interface, breaking the rotational 
part of the full d-dimensional Euclidean symmetry. The latter, which we call the 
isotropic fixed point, preserves this symmetry, i.e. a typical configuration associated 
with this point is a scale invariant fractal interface (David 1981). 

Next we study the stability properties of the fixed points. Within the subspace of 
t alone, the zero temperature fixed point is infrared stable and uninteresting. But the 
isotropic fixed point is unstable, allowing us to identify it with a system at criticality. 
(Of course it is unstable against the symmetry breaking field m2). Apart from one case 
(Lin and Lowe 1983), the effect of no other interaction on this fixed point ir understood. 
A systematic characterisation of other interactions is their naive dimensions. Since 
the basic field f has dimension -1 (i.e. momentum-’), perturbations with any power 
of f without derivatives are expected to be relevant. However, such interactions 
represent an explicit breaking of the translational part of the full Euclidean symmetry. 
Simple examples like inhomogeneous magnetic or gravitational fields are known to 
drive the system away from criticality. Their presence must be controlled to arrive at 
a critical point. In this paper, we will not be concerned with such fields, except, of 
course, the infrared regulating ‘mass’ term. 

On the other hand, derivatives of f are translationally invariant (although not 
rotationally invariant). The lowest dimension object in this class is Vf, with zero 
dimension. Thus any power of it is still dimensionless and we are faced with an infinite 
set of such marginal operators, as should be expected in physical systems. Indeed, 
even in the continuum limit, homogeneous anisotropic interactions are inherited from 

t We now have the usual Gaussian measure for the functional integrals. 
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the underlying lattice structure in many examples: uniaxial magnets, binary alloys, the 
Ising model itself, etc. Now, we believe anisotropy to be irrelevant, if the fixed point 
is to describe bulk criticality. Yet the effect of such interactions on the isotropic fixed 
point has not been analysed. In the next section, we attempt to remedy this defect 
with a study, at the lowest order in E, of this ‘most dangerous’ sett of perturbations. 

3. Perturbations at the one loop level 

In this section, we derive in some detail the effects on the isotropic fixed point due to 
insertions of  the naively dimensionless composite operators. That is, in the critical 
dimension d = 1, these would be of dimension zero. Now, in the renormalisation group 
language, an operator with a negative dimension would be classified relevant and 
would produce crossover behaviour. On the other hand, positive dimension perturba- 
tions are considered ‘safe’ and produce only corrections to scaling, with the leading 
singularities being universal. Thus, the operators we propose to consider do not seem 
‘dangerous’. Two observations caution us otherwise, however. 

( i )  Since we wish to study a non-trivial fixed point, we should expect anomalous 
dimensions in addition to the naive quantities. 

(ii) For d > 1, even the physical dimension is negative ( - E ) ,  so that all the 
perturbations appear to be relevant. At first sight, the isotropic fixed point seems 
doomed. 

Fortunately, the anomalous dimensions are positive (except in two cases) and no 
(physically meaningful) perturbation on the isotropic fixed point is relevant. 

Since V f is dimensionless, the class of ‘dimensionless’ operators is just integrals 
of general functions, G, of the local field V f (x): 

V[f] = v d“x G(Vf) .  ( 5 )  

Here v is a arbitrary small constant, with G normalised somehow. To study their 
effects on the system we follow the standard route (Amit 1984) and consider vertex 
functions with one insertion of vG at zero momentum. (This is equivalent to studying 
vertex functions associated with H+ V up to all order in T but only to first order in 
v.)  Extra divergences are to be absorbed into U via the renormalisation 

v = UJ$”( t )  (6) 

where 2, would contain only a simple pole in E at the one loop order. Of course, this 
equation is highly symbolic since an insertion of an arbitrary G would not be renormalis- 
able with a simple factor. Instead, 2, should be regarded as a matrix which displays 
the mixing of the (infinitely) many operators corresponding to different G. Note that, 
on dimensional grounds, we do not expect mixing of operators outside this class. 

To be specific, we analyse all one loop diagrams (figure 1) with one V and many 
U vertices. Extracting a pair of V f  from V for the internal lines, we are left with 

G, = fa2G/(aVfaV, f) (7) 

t The curvature term analysed by Lin and Lowe (1983) consists of one factor of V2fand many of V$ Having 
dimension one, it is naively ‘safe’. 
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Figure 1. A typical one loop graph with one V insertion. 

for the external ones. Together with the momenta coming from contractions, such a 
vertex contributes a factor ikiG,kj to the final integral over the internal momentum k. 
Similarly, we have ikiUijkj /T for each of the other vertices. An internal line comes 
with T / ( k 2 +  l),  where we have set the mass to unity. Explicitly, with all the factors 
from Ith order perturbation theory and contraction combinatorics, we have 

Sd'k [(-l)'/ I!](iu7%Gk)($kUk)'(k2+ 1)-'-'(2'1!) 

where the sum extends from 0 to 00 and the indices i , j  are suppressed. The integration 
should produce a l / ~  factor, so that the divergent contribution is proportional to UT/&. 

Summing the series leads to the integrand kGk/[(k2+1)+kUk]. Change the 
variables by k = ( f i ) q ,  where the matrix J is defined by 

J;' = 6, + U,, (9) 

Now, the integral reduces to the standard one (Wallace and Zia 1979, Forster and 
Gabriunas 198 1 a, b) : 

( 2 ~ ) - ~  5 d"qqi%/(q'+ I ) =  -a&/& 

where a = ( ~ T ) - " ~ I - (  1 -;E) is absorbed into the renormalised temperature t. Thus, 
we obtain 

(-ut /2~)d[det  J ]  Tr(JG). (10) 

It is straightforward to derive JIj = g,dg, where g ,  = S, + V f V j f  is the metric for the 
interface and g is its determinant. Note that, to lowest order in E, det J is just g. The 
final result for all the one loop graphs is 

(- ut /  2~ ) g ( gijGij ). (11) 

The interpretation of this simple formula is as follows. It is a certain (local) function 
of V f ( x ) .  In the I- corresponding to this function, we have a divergence as a result of 
a single insertion of V. 



2874 R K P Zia 

In general, ( 1 1 )  is not proportional to G ( V f )  so that the one loop divergent part 
is not proportional to the tree contribution. However, (1 1 )  is linear in G by construction, 
so that the effect of renormalisation is revealed in a matrix operation. To calculate 
the anomalous dimensions, we must first diagonalise this matrix and find the 
eigenoperators. Under renormalisation, the eigenoperators would change by a simple 
multiplicative factor and are called scaling fields (Wegner 1972). 

Thus, we seek those G which satisfy the differential equation 

( 1  + t 2 ) { 8 ,  + titjNiajG(6) = h G ( t )  (12) 
where A is an eigenvalue. Although it is feasible to find solutions to the equation in 
the straightforward way (Zia and Lowe 1980), we discover that, without some appropri- 
ate boundary conditions, the problem is ill defined. Some physical content must be 
added to arrive at these boundary conditions. 

For insight, we draw again on the close analogy between the interface problem 
and the non-linear sigma model of the O ( n )  symmetric Heisenberg spin systems in 
2 +  E dimensions (Polyakov 1975, Brezin and Zinn-Justin 1976a, b). In particular, the 
mixing of an infinite number of operators? also appears in the analysis of that isotropic 
fixed point (Brezin et a1 1976a, b). Recognising the importance of the full O ( n )  
symmetry, these authors showed that operators corresponding to the irreducible rep- 
resentations of O( n )  are the eigenoperators. This leads us to explore the transformation 
properties of our V. 

Clearly, only the z-x rotation part of the full group needs attention. In some sense, 
& d x  is already an invariant and should be extracted out of G. So we define F by 

G = F & .  (13) 
With the full d dimensions in mind, we tailor F s-0 that it depends on Vf through a 
bona fide d-dimensional vector. The most natural one is the unit normal to the 
interface$: nr,  p = 1,. . . , d. Explicitly 

Now we expect that, if F is chosen to be a generalised spherical harmonic function 
of nF, it will lead to an eigenoperator. To check, we first express the differential 
operator in ( 1  1 )  and (12) in terms of derivatives 8i with respect to ni instead of that 
with respect to V i :  

Note that aind is not zero but & ni . 

ni = V f / &  nd = - 1 1 4 .  (14) 

si = (&)g,a/avjf: 

Again, keeping terms only to lowest order in E, we obtain, instead of ( l l ) ,  

(- ~ t / 2 ~ ) & (  h&t3jF) (15) 

hjj6j8jF = AE (16) 

where h, = 8, - ninj. Equation (12) is replaced by an even simpler one: 

Note that hG%Sjnd E E and hij(8,n,)(Sjn,)  = 6,, - n,n,, so that (symmetric) traceless 
tensors of any rank will solve equation (16). Specifically, with A = - N ( N -  l ) ,  the 
solutions are 

t The physics of the systems being different, the operators considered by Brezin et a1 (1976a, b) are naively 
relevant as opposed to marginal. 
$ We use Latin indices for the transverse d - 1 dimensions and Greek ones for the full space. 
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where m runs over the many traceless S. with N indices, a reflection of the familiar 
degeneracies encountered in ordinary angular momentum. Of course, these objects 
are the generalised spherical harmonics in d dimensions and can be normalised in the 
usual way. It is instructive to consider the transformation properties of VN,m= 
oN,, j F N * " G  under ( 2 )  and verify that they indeed form irreducible representations 
of the full Euclidean group. In this light, the missing boundary conditions that go 
with ( 1 2 )  are finiteness of G at 6 = 0 and a, corresponding to finiteness of F for n 
parallel and perpendicular to z .  

Having found the eigenoperators, we may now write a scalar equation for the 
renormalisation of oN,,,: 

0 N . m  = ( 0 N . m )  RzN 

with 

Z N ( t )  = 1 + $ N ( N -  l ) t / E + .  . * . 
The renormalisation group equations for vertex functions with these insertions will 
contain the additional beta functions, P N (  t )  = P ( t ) 8 ,  In( 2,) = $ N (  N - 1 )  t + O( E ) .  At 
the isotropic fixed point (4), these reduce to 

P N (  t,)  = $v( N - 1 )  E + O( E * )  ( 1 9 )  

which are precisely the anomalous dimensions of VN,,, . 

tions by this class of operators, we must add the naive dimension - E  to ( 1 9 ) :  
To complete the study of the stability of the isotropic fixed point against perturba- 

W N , m  = f( N2 - N - 2 ) &  + 0( E 2 ) .  ( 2 0 )  

Near criticality where T = (T, - T )  is small, if the singular part of a thermodynamic 
quantity of the system were to be represented by r[(uN,m)R; T ] ,  then ( 2 0 )  implies 

r( VR; 7) = r(0; T)[ 1 + AuRT"'" f o( U 2 ) ]  ( 2 1 )  

where Y is the usual correlation length exponent and A is a non-universal amplitude. 
Thus, the sign of uN,,, determines whether the corresponding interaction is relevant 
or not. 

This analysis shows that the only relevant interactions correspond to N=O or 1 .  
The N = 0 operator is just H itself, so it represents the changing of temperature 

i7 Indeed, this exponent should be simply ap(t,)/at,  to all orders. 
The N = 1 operators are not really operators at all; in our framework, ni& is an 

(ordinarily neglected) surface term while 1 n& is a constant, independent of the 
fields! That the latter is 'relevant' reflects nothing but the physical dimension of d"x. 

The special role of these two cases in fact provides a useful check on this and 
future computations. Beyond these we see that the N = 2 interactions are marginal 
(at this order), while all the rest are irreleoant. In the next section, we discuss the 
physical significance of this analysis and conclude with some remarks. 

4. Discussions and conclusion 

We have studied the effects of a class of interactions on the isotropic fixed point. The 
choice of this class is based on the renormalisation group idea that operators of low 
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dimensions are more relevant. Restricting ourselves to those which preserve transla- 
tional invariance, we considered the ones of lowest dimension. If the underlying bulk 
system also satisfies rotational invariance, then all such interactions except H itself 
are absent. Our study is not academic, however, since all Ising-like systems, apart 
from the liquid-gas case, are anisotropic. In the low temperature two-phase regime, 
where the most excitable modes are the interfacial fluctuations, it should still be possible 
to use an effective Hamiltonian like H. The most reasonable guess would not be (1) 
but (Zia 1984) 

j d x [ d n ) & l l  T ( 2 2 )  

where the anisotropy of the underlying system shows up as an n-dependent surface 
tension ~ ( n ) .  Note that, as it stands in ( 2 2 ) ,  the anisotropic surface tension is a 
dimensionless object, since its physical dimension has been absorbed into the definition 
of T. 

Assuming for the moment that this anisotropic surface tension is a non-singular 
function of n, we may expand it in a series of (d-dimensional) spherical harmonics, 
i.e. the traceless tensors (17). We next argue that the series contains only terms with 
even N. The anisotropic surface tension is the excess (free) energy density required 
to create a planar interface between the two phases. Although it is expected to depend 
on the orientation, it should not depend on which phase is on which side of the 
interface. Defining the normal as pointing from one phase to the other, we see that 
o(n) should be an even function of n. Since N is simply the number of factors of n 
in FNSm,  we need only the even N ones to represent U. The conclusion is that the 
isotropic fixed point is not unstable against perturbations coming from analytic forms 
of anisotropy, to order E. Note that, because the N = 2  harmonics are marginal, we 
cannot state that the isotropic fixed point is absolutely stable at this stage. For this 
reason, a two loop calculation is crucial. Such a calculation should be feasible since 
( a )  the more elegant techniques of Forster and Gabriunas (1981a, b) can be generalised 
and ( b )  the operators (17) are expected to remain eigenoperators at all orders, thanks 
to their irreducible character. 

What about singular forms of the anisotropic surface tension? It is possible for 
~ ( n )  to develop cusps (discontinuities in the first derivative) at certain points when 
the temperature falls below the roughening one. In that case, D will have terms linear 
in n, although absolute values appear in order to preserve evenness. Would the N = 1 
interaction appear? Is the isotropic fixed point definitely unstable in such circum- 
stances? The short answer to these questions is no. Mathematically, since U( n) is still 
even, a cusp will be represented by an even N series in much the same way a square 
wave is represented by a Fourier series. Physically, we can argue that our approach 
is valid in the sense of an expansion about d = 1. Now, even for d = 2,  the interface 
is believed to be rough down to T=0.  Thus, within the framework of the I + E  
expansion, it is reasonable to restrict our attention to smooth U( n). Since roughening 
transitions are subtle phenomena in d = 3 typically, we should not be surprised that 
they are beyond the powers of this formalism. 

So far, we have studied only the dimensionless operators. We plan to extend this 
analysis to ones with higher naive dimension. Physically, these interactions correspond 
to curvature terms in the interfacial Hamiltonian (Lin and Lowe 1983, Zia 1985) and 
are of interest in another context. In view of the one loop result for the mean curvature 
(Lin and Lowe 1983) (no O( E )  term in the full dimension) to carry out these calculations 
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would be more for the sake of completeness than urgency. Higher curvature terms 
have even larger naive dimensions and are not expected to become relevant for the 
isotropic fixed point. 

Returning to the criticism of Huse et a1 (1985), which motivated this analysis, we 
believe that the isotropic fixed point is stable against perturbations associated with 
anisotropy. In a sense, this is an expected result based on the ‘orthodox’ view that 
singular critical behaviour is not sensitive to the underlying lattice structure. So, we 
would argue that the criticisms of Huse et al(1985) are misdirected. The configurations 
we sum over and the naive measure we use are rotationally invariant. Indeed, the 
non-trivial invariant measure (Bruce and Wallace 1983) dx  In[ 1 + (f/ R ) ]  for fluctu- 
ations around a spherical interface of radius R reduces to the one used here as R + CO. 

The isotropic fixed point does describe a rotationally invariant system and it is stable? 
within the context of the E expansion. 

Nevertheless, we should be cautious in taking the 1 + E results blindly up to physical 
dimensions, The unease felt by many authors concerning the neglect of overhang 
configurations is justified. In order not to contradict our previous statement, there 
must be a measure for these configurations which also satisfies rotational invariance. 
Unfortunately, we do not know how to construct such a measure, let alone prove our 
expectation. On the other hand, Huse et al (1985) have not disproved this conjecture. 
To complicate the problem, the overhangs will probably contribute at the level of 
exp(-l/e) and so beyond the reach of E expansions. The lesson we learn is not that 
the statistical mechanics of near-planar interfaces must be anisotropic by construction. 
Instead, we must be open to the possibility of non-perturbative contributions which 
are also isotropic. 

Indeed, in the beautiful model of Huse et a1 (1985) there is an isotropic fixed point 
which splits away from the d = 2 Ising fixed point by such exponentially small amounts, 
with the latter being the stable one. However, that isotropic fixed p i n t  is not likely 
to be ours either, for two reasons. Our fixed point is characterised by a singly fractal 
interface, while theirs contains many interfaces. Another difficulty lies in all calculations 
carried out in exactly two dimensions. There, interface models (with short ranged 
interactions such as functions of V f )  can be reduced to free field theories, echoing a 
similar phenomenon (Brezin and Zinn-Justin 1976a, b)  for the O(2) non-linear sigma 
model. By contrast, our model cannot be reduced to a free theory. 

At first sight, such discussions seem to imply that the 1 + E expansion is simply an 
academic pursuit, of no more than pedagogical value. This point of view is sharpened 
by the availability of many exact results from the d = 2 Ising model and the reliability 
of Borel-Pad6 estimates from d = 3 field theories (Nickel 1973, Baker et al 1978, Le 
Guillou and Zinn-Justin 1980). We end, therefore, by offering some practical use of 
the results from the 1 + E expansion. Not all the universal critical quantities associated 
with two-dimensional Ising-like systems are susceptible to exact analysis on the original 
model. One example is critical dynamics, and another is corrections to scaling coming 
from asymmetry of the two phases (e.g. liquid-gas). Since the isotropic fixed point is 
expected to be at least exponentially close to the true fixed point near d = 1, the 
numerical results can also be trusted to this level. These can in turn be used in an 
interpolating scheme in conjunction with the results from the expansion around the 
upper critical dimension four. Although there is no rigorous proof that such a scheme 
is valid, the expectation is that, at least numerically, the estimate should be better than 
I Note the contrast between our situation and that of the O(n) symmetric fixed point which is unstable 
against all anisotropic interactions. 
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simple extrapolation from either end. Such a method was used (Bausch et a1 1981) 
for the dynamic exponent z in a pure relaxational model with some success. Presum- 
ably, it can also be employed for w 5 ,  the leading exponent related to the asymmetry 
of the phases. A three loop result from the (4- d )  expansion already exists (Zhang 
and Zia 1982). On the other hand, the leading asymmetric interaction in the low 
temperature regime is the mean curvature (Fisher and Wortis 1984, Lin and Lowe 
1983). But here, only the one loop contribution is known. In this sense, a two loop 
calculation of this exponent is not just another academic exercise. Beyond these points, 
we must look toward systems other than ferromagnetic Ising ones for ground breaking 
applications of the low temperature expansion schemes. 
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